mirror of
https://github.com/Fare-spec/cours.git
synced 2025-12-07 10:50:36 +00:00
63 lines
1.4 KiB
Python
63 lines
1.4 KiB
Python
from math import gcd
|
|
|
|
def est_premier(n):
|
|
if n < 2:
|
|
return False
|
|
for i in range(2, int(n**0.5) + 1):
|
|
if n % i == 0:
|
|
return False
|
|
return True
|
|
|
|
def liste_premier_inf(n):
|
|
return [i for i in range(2, n+1) if est_premier(i)]
|
|
|
|
def pgcd(a, b):
|
|
while b:
|
|
a, b = b, a % b
|
|
return a
|
|
|
|
def cle_publique_possible(a, b):
|
|
n = a * b
|
|
return [i for i in range(1, n) if pgcd(i, n) == 1]
|
|
|
|
def inverse(e, n):
|
|
t, newt = 0, 1
|
|
r, newr = n, e
|
|
while newr != 0:
|
|
quotient = r // newr
|
|
t, newt = newt, t - quotient * newt
|
|
r, newr = newr, r - quotient * newr
|
|
if r > 1:
|
|
raise ValueError("L'inverse modulaire n'existe pas")
|
|
if t < 0:
|
|
t += n
|
|
return t
|
|
|
|
def chaine_en_liste(chaine):
|
|
return [ord(c) for c in chaine]
|
|
|
|
def chiffre(e, N, liste):
|
|
return [pow(x, e, N) for x in liste]
|
|
|
|
def dechiffre(d, N, liste):
|
|
return [pow(x, d, N) for x in liste]
|
|
|
|
def liste_en_chaine(liste):
|
|
return ''.join(chr(x) for x in liste)
|
|
|
|
a, b = 61, 53
|
|
N = a * b
|
|
phi = (a - 1) * (b - 1)
|
|
e = 17
|
|
d = inverse(e, phi)
|
|
cle = 29987
|
|
l = [18802, 561, 13389, 1494, 561, 8038, 2177, 9098, 14888, 9098, 12143, 561, 8038, 12143, 9098, 2925, 19036, 9098, 26542, 561, 13389, 468, 19036, 20236]
|
|
message_dechiffre = dechiffre(cle, N, l)
|
|
message_final = liste_en_chaine(message_dechiffre)
|
|
|
|
print("Message déchiffré:", message_final)
|
|
|
|
|
|
|
|
|