166 lines
5.4 KiB
TeX
166 lines
5.4 KiB
TeX
\documentclass{article}
|
||
\usepackage{amsmath,amssymb, amsthm}
|
||
\usepackage{geometry}
|
||
\usepackage[colorlinks=true, linkcolor=blue, urlcolor=blue]{hyperref}
|
||
\usepackage{enumitem}
|
||
\geometry{a4paper, margin=1in}
|
||
\begin{document}
|
||
\Large
|
||
\section{Preuves A Connaitre (PAC)}
|
||
\subsection{Chapitre 1}
|
||
\subsubsection{Les identités structurales usuelles.}
|
||
|
||
\begin{itemize}
|
||
\item
|
||
Soit $Z_1 et Z_2$ des nombres complexes, alors on a les égalités:
|
||
\[
|
||
\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}
|
||
\]
|
||
\[
|
||
\overline{Z_1 \times Z_2} = \overline{Z_1} \times \overline{Z_2}
|
||
\]
|
||
\[
|
||
\lvert Z_1 \times Z_2\rvert = \lvert Z_1 \rvert \times \lvert Z_2 \rvert
|
||
\]
|
||
\item Demonstrations:
|
||
\[
|
||
Z_1 = a+ib \]
|
||
\[Z_2 = a^\prime +ib^\prime\]
|
||
\begin{itemize}
|
||
\item $\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}:$
|
||
\[
|
||
\overline{Z_1 + Z_2} = \overline{a + ib + a^\prime + ib^\prime} = a + a ^\prime - i\left(b + b^\prime\right)
|
||
\]
|
||
or
|
||
\[
|
||
\overline{Z_1} + \overline{Z_2} = \overline{a+ib} + \overline{a^\prime+ib^\prime} = a + a ^\prime - i\left(b + b^\prime\right)
|
||
\]
|
||
donc:
|
||
\[\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2} \]
|
||
\item $\overline{Z_1 Z_2} = \overline{Z_1}\,\overline{Z_2}:$
|
||
\[
|
||
Z_1Z_2=(a+ib)(a'+ib')=aa'-bb' + i(ab'+a'b)
|
||
\]
|
||
\[
|
||
\overline{Z_1Z_2}=aa'-bb' - i(ab'+a'b)
|
||
\]
|
||
or
|
||
\[
|
||
\overline{Z_1}\,\overline{Z_2}=(a-ib)(a'-ib')=aa'-bb' - i(ab'+a'b)
|
||
\]
|
||
donc:
|
||
\[
|
||
\overline{Z_1 Z_2}=\overline{Z_1}\,\overline{Z_2}
|
||
\]
|
||
\item $\lvert Z_1Z_2\rvert=\lvert Z_1\rvert\,\lvert Z_2\rvert:$
|
||
\[
|
||
Z_1=a+ib,\qquad Z_2=a'+ib'
|
||
\]
|
||
\[
|
||
Z_1Z_2=(a+ib)(a'+ib')=aa'-bb' + i(ab'+a'b)
|
||
\]
|
||
\[
|
||
\lvert Z_1Z_2\rvert^2=(aa'-bb')^2+(ab'+a'b)^2
|
||
\]
|
||
\item
|
||
Développer séparément :
|
||
\[
|
||
\lvert Z_1\rvert^2=a^2+b^2,\qquad \lvert Z_2\rvert^2=a'^2+b'^2
|
||
\]
|
||
|
||
Produit :
|
||
\[
|
||
\lvert Z_1\rvert^2\,\lvert Z_2\rvert^2=(a^2+b^2)(a'^2+b'^2)
|
||
\]
|
||
|
||
Égalité d’identité algébrique :
|
||
\[
|
||
(aa'-bb')^2+(ab'+a'b)^2=(a^2+b^2)(a'^2+b'^2)
|
||
\]
|
||
|
||
Donc :
|
||
\[
|
||
\lvert Z_1Z_2\rvert^2=\lvert Z_1\rvert^2\,\lvert Z_2\rvert^2
|
||
\]
|
||
\[
|
||
\lvert Z_1Z_2\rvert=\lvert Z_1\rvert\,\lvert Z_2\rvert
|
||
\]
|
||
|
||
\end{itemize}
|
||
|
||
|
||
\end{itemize}
|
||
|
||
\subsubsection{Solutions d'un polynôme du second degré}
|
||
\begin{itemize}
|
||
\item Soit $Z_1, Z_2 \in \mathbf{C} $ des solutions d'un polynôme de degré 2 telles que:
|
||
|
||
|
||
\[
|
||
a\left(z - Z_1\right)\left(z - Z_2\right) = az^2 + bz + c
|
||
\]
|
||
on cherche a vérifier que $Z_1$ et $Z_2$ sont solutions de $az^2 + bz + c$
|
||
\item Demonstration:
|
||
\[
|
||
Z_1 = \frac{-b+\delta}{2a}
|
||
\]
|
||
\[
|
||
Z_2 = \frac{-b-\delta}{2a}
|
||
\]
|
||
Avec $\delta^2 = \Delta$ et $\Delta = b^2 - 4ac$ \\
|
||
On obtient donc avec le membre de gauche:
|
||
\[
|
||
a\left(z-Z_1\right)\left(z-Z_2\right) = a\left(z - \frac{-b+\delta}{2a}\right)\left(z - \frac{-b-\delta}{2a}\right)
|
||
\]
|
||
\[
|
||
=a\left(z^2 -z \times\left(\frac{-b-\delta}{2a} + \frac{-b+\delta}{2a}\right) + \frac{b^2 - \delta^2}{4a^2}\right)
|
||
\] or $\delta^2 = \Delta = b^2 - 4ac$
|
||
\[
|
||
=a\left(z^2+z\frac{b}{a}+\frac{-b^2-b^2+4ac}{4a^2}\right)
|
||
= \boxed{az^2 + bz + c}
|
||
\]
|
||
Qui correspond au membre de droite donc à une equation de degré 2.
|
||
\end{itemize}
|
||
\subsubsection{Racines n-ièmes complexes}
|
||
\begin{itemize}
|
||
\item Soit $z_0 = \rho e^{i\theta}$ un nombre complexe non nul écrit sous la forme polaire et n un entier naturel strictement positif. Alors l'équation $z^n = z_0$ admet pour solutions les $n$ nombres $\sqrt[n]{\rho}e^{i\frac{\theta}{n} }$, ... ,
|
||
\item{Demonstration: } — On vérifie d’abord que les nombres proposés vérifient bien
|
||
$z^{n}=z_{0}$ : si $k\in\{0,\ldots ,n-1\}$,
|
||
\[
|
||
\left(\sqrt[n]{\rho}\, e^{i(\theta+2k\pi)/n}\right)^{n}
|
||
= (\sqrt[n]{\rho})^{n}\, \bigl(e^{i(\theta+2k\pi)/n}\bigr)^{n}
|
||
= \rho\, e^{i(\theta+2k\pi)}
|
||
= \rho\, e^{i\theta}\, e^{i2k\pi}
|
||
= \rho\, e^{i\theta}
|
||
= z_{0}.
|
||
\]
|
||
|
||
Comme $z_{0}\neq 0$, ces nombres sont deux à deux distincts.
|
||
En effet, si $k$ et $j$ sont dans $\{0,\ldots ,n-1\}$,
|
||
\[
|
||
\sqrt[n]{\rho}\, e^{i(\theta+2k\pi)/n}
|
||
= \sqrt[n]{\rho}\, e^{i(\theta+2j\pi)/n}
|
||
\iff
|
||
e^{i(\theta+2k\pi)/n}
|
||
= e^{i(\theta+2j\pi)/n}
|
||
\]
|
||
\[
|
||
\iff
|
||
e^{i(2(k-j)\pi)/n}=1
|
||
\iff
|
||
\frac{k-j}{n}\in\mathbb{Z}
|
||
\iff
|
||
k=j.
|
||
\]
|
||
|
||
On a donc trouvé $n$ racines deux à deux distinctes du polynôme
|
||
$P(z)=z^{n}-z_{0}$, qui est de degré $n$, donc ces racines sont les seules racines
|
||
de $P$. \qed
|
||
|
||
En particulier les nombres de la forme
|
||
\[
|
||
e^{\, i(2k\pi/n)},\qquad k=0,\ldots ,n-1,
|
||
\]
|
||
\end{itemize}
|
||
\end{document}
|